MATH 2010 E TuTo ]

(1) Let y be the (parametrized) curve given by
3
20 = (@, 5 1), te[-V3, V3
(a) (5 points) Sketch the curve 7.

(b) (5 points) Show that it is a simple closed curve.

(c) (2 points) Calculate the tangent vector of v at t for all
t € (—V3,V3).
(d) (4 points) Calculate the arc-length of 7.
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(2) Let P be the plane passing through the points
(1,-1,1), (2,2,0), and (0,1, —2).

(a) (4 points) Find a normal vector to P.

(b) (4 points) Find an equation of P of the form
ar + by +cz=d,
where a, b, ¢, d are constants.

(c) (2 points) Find a parametrization of the line passing through

the point (0,0,1) and perpendicular to P in the following

form
F—aiid
for some @, 7' € R3.

(d) (6 points) Using your result in previous parts, find the

exact distance from the point (0,0, 1) to the plane P.
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(c) (2 points) Find a parametrization of the line passing through

the point (0,0, 1) and perpendicular to P in the following

form

7 =@+ t7,

for some @, 7 € R3.

(d) (6 points) Using your result in previous parts, find the

exact distance from the point (0,0,1) to the plane P
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(3) (a) (4 points) Find the limit of f(z,y) = ;2_114_ as (z,y) =

(0,0) along the line wit

(b) (4 points) Does  lim
(z,y)—(0,0

(c) (4 points) Find the limit of g(z,y) = o)

y2

h slope m.

: f(z,y) exist? Justify your answer.

2
R .- (2, ) >

(0,0) along the line with slope m.

(d) (4 points) Does  lim

g(z,y) exist? Justify your answer.

(z,9)—(0,0)
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(4) Consider rational function

2z + 32%y? + 292
] f(IL', y) Bt .’12'2 H y2
~ (a) (2 points) Let A be the domain of definition of f, find A.

~ (b) (6 points) Find, without justification, the interior Int(A),
_ exterior Ext(A), and boundary 0A of A.

— (c) (4 points) Is A open? Is A closed? Justify your answers.
~— (d) (4 points) Can f be extended to a function continuous on
— R?? Justify your answer and, if so, find the value of the

— extended function f(@) at those @ ¢ A.
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. flz,y) =

~ (4) Consider rational function

222 + 3z2y? + 22

z? + 92

(a) (2 points) Let A be the domain of definition of f, find A.

(b) (6 points) Find, without justification, the interior Int(A),

exterior Ext(A), and boundary 0A of A.

(c) (4 points) Is A open? Is A closed? Justify your answers.

(d) (4 points) Can f be extended to a function continuous on

R?? Justify your answer and, if so, find the value of the

extended function f(a@) at those & ¢ A.
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(5) Let

f(z,y, 2) = ayln(z®2?)

(a) (2 points) Find the domain of definition of Vi

(b) (3 points) Find all 3 first-order partial derivatives of f.

(c) (9 points) Find all 9 second-order partial derivatives of f.

(d) (2 points) Clairaut’s theorem (mixed derivative theorem)

reduces the calculation of all 27 third-order partial deriva-

tives of f to the calculation of a smaller number of third-

order partial derivatives. What is this smaller number?

Justify your answer.
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(5) Let

f(z,y, 2) = zyIn(z?2?)

(a) (2 points) Find the domain of definition of Vi

(b) (3 points) Find all 3 first-order partial derivatives of f.

(c) (9 points) Find all 9 second-order partial derivatives of f.

(d) (2 points) Clairaut’s theorem (mixed derivative theorem)

reduces the calculation of all 27 third-order partial deriva-

tives of f to the calculation of a smaller number of third-

order partial derivatives. What is this smaller number?

Justify your answer.
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(a) (6 points) Using definition of partial derivatives, find f,(0,0,1),

(6) Let

‘3
ain(a ) , ifx2+1924#0

i z24y

£;(0,0,1), and £,(0,0,1):

(b) (14 points) Using definition of second-order partial deriva-

tives, find f,;(0,0,1) and f,,(0,0,1).
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(6) Let
zsin(z 3 :
f(ziyiz) = sxgj;;y)’ if 2 +y* #0
7y) O, ifx2+y2=0.

(a) (6 points) Using definition of partial derivatives, find f,(0,0,1),
f4(0,0,1), and f£,(0,0,1).

(b) (14 points) Using definition of second-order partial deriva-
tives, find f,;(0,0,1) and f,,(0,0,1).
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